

Number: GZHT90306944(S1)

Applicant: NGEE MING SHOE MANUFACTURERS SDN.BHD. Date: Sep 15, 2012

LOT 25, INDUSTRIAL AREA, 43300 THIS IS TO SUPERSEDE SERI KEMBANGAN, SELANGOR, REPORT NO. GZHT90306944

MALAYSIA DATED AUG 14, 2012

Attn: MISS LILIAN FONG

Sample Description:

Four (4) groups of submitted sample said to be:

(A) Three (3) pairs of 1809A Men's leather safety boots in Brown with Black rubber outsole

(B) Black rubber outsole used for 1809A Men's leather safety boots

(C) One and a half (1.5) pairs of steel plates

(D) Black rubber sheets used for outsole of 1809A Men's leather safety boots.

Standard : --Size : US 9#

Ref. No. : 1809A, 1811H, 1811M

P.O. No. : -Buyer's Name : OSCAR
Vendor : -Supplier : -Manufacturer : -Ref. : -Country Of Origin : --

Goods Exported To : MALAYSIA

Date Period Received : From Aug. 01, 2012 to Sep. 15, 2012

Date Test Started : Aug. 01, 2012

Test Result Please Refer To Attached Page(S).

Should you have any query on this report, you may contact at gzfootwear@intertek.com

Authorized By:

For Intertek Testing Services

Shenzhen Ltd.

Huang Ning, Andy

Assistant General Manager

Number: GZHT90306944(S1)

Tests Conducted (As Requested By The Applicant)

1 Electric Shock Resistance For Whole Footwear (ASTM F 2412-2011)

	(A)	ASTM F 2413 Requirement	Pass/Fail
Without Disruptive Dis Pairs Of Tested Sample Left : Right:	charge To Ground With 1.5 s, Leakage Current: 0.30 mA 0.28 mA	*	Pass
Right:	0.30 mA		

Remark:

- * = Without Disruptive Discharge To Ground Under The Potential Of 18 kV 60 Hz AC For 1 Minute, Leakage Current: ≤ 1.0 mA.
- 2 Impact Resistance For Whole Footwear (ASTM F 2412-2011, I75)

	(A)	ASTM F 2413	Pass/Fail
		Requirement	
Left:	19.9 mm	≥ 12.7 mm	Pass
Left:	19.3 mm	\geq 12.7 mm	Pass
Right:	18.6 mm	\geq 12.7 mm	Pass

3 Compression Resistance For Whole Footwear (ASTM F 2412-2011, C75)

	(A)	ASTM F 2413	Pass/Fail
		Requirement	
Left :	21.2 mm	≥ 12.7 mm	Pass
Right:	19.1 mm	\geq 12.7 mm	Pass
Right:	20.0 mm	\geq 12.7 mm	Pass

4 Puncture Resistance For Puncture Resistant Devices (ASTM F 2412-2011)

	(C)	ASTM F 2413	Pass/Fail
		Requirement	
Left :	1200 N (#)	*	Pass
Left :	1200 N (#)	*	Pass
Right:	1200 N (#)	*	Pass

Remark:

- * = The Test Pin Does Not Visually Penetrate Beyond The Face Of The Material Nearest The Foot After 1200 N.
- # = The Test Pin Does Not Penetrate Beyond The Face Of The Material Nearest The Foot.

Number: GZHT90306944(S1)

Tests Conducted (As Requested By The Applicant)

5 Oil Resistance (ASTM D471-2010, IRM 903#Oil, 22 Hours, 23 $^{f C}$):

(A) <u>Applicant's Pass/Fail</u> Requirement

Volume Swell: 4.3 % Max. 12% Pass

6 Slip Resistance (ASTM F2913-2011, Clay Tile Surface, Vertical Force: 500 N, 23°C, 50 % R.H.):

	(A)	Suggestion	Pass/Fail
		Requirement	
Quarry Tile:			
Forepart Dry:	0.96	Min. 0.30	Pass
Forepart Wet:	0.46		
Heelpart Dry:	0.97		
Heelpart Wet:	0.47		

Note:

It Must Be Noted That The Slip Resistance Test Carried Out In This Report Denotes An Indication Of Slip Of This Particular Footwear/Component On The Surface Mentioned In The Test Item. It Is Important To Note That Footwear Is Subject To Many Different Conditions Encountered In Everyday Use And That It Is Impossible To Make Footwear Resistant To Slip In All Conditions. Nevertheless, It Is Generally Accepted That Problems Are Minimized If The Guideline Coefficients Of Friction Are Achieved.

7 Abrasion Resistance (ASTM D 1630-2006, NBS Abrader):

(B) Requirement Pass/Fail 114.0% - -

8 Non-Marking Test (ASTM E 303-1993(2008), PVC Surface)

(B) Requirement Pass/Fail
Color Transfer: 4.5 Grade - -

Tel: (8620)2232 1668 / 8396 6868 Fax: (8620)8222 7490 Postcode:510730

Number: GZHT90306944(S1)

Tests Conducted (As Requested By The Applicant)

Footwear Protecting Against Chemicals (Sole) (BS EN 13832-2:2006(E), 6.2)

	(B)	Applicant's Requirement	Pass/Fail
<pre>Sample 1 Chemical Used: Tear Resistance: Before Degradation:</pre>	Acetone (Letter Code: B)		
	24.0 kN/m	Min. 8.0 kN/m	Pass
After Degradation:	26.0 kN/m	Min. 6.4 kN/m	
Hardness: Before Degradation:	2000 1217 111		
7.C. D. J. I.	68 Shore A	Min. 30 Shore A	
After Degradation:	70 Shore A	Min. 30 Shore A Max.: *	
<pre>Sample 2: Chemical Used: Tear Resistance: Before Degradation:</pre>	Toluene (Letter Code: F)		
-	24.0 kN/m	Min. 8.0 kN/m	Pass
After Degradation: Hardness:	26.5 kN/m	Min. 6.4 kN/m	
Before Degradation:			
After Degradation:	68 Shore A	Min. 30 Shore A	
micel begladation.	74 Shore A	Min. 30 Shore A Max.: *	
Remark: * = Value Before Degradation +10 Shore A.			

Tel: (8620)2232 1668 / 8396 6868 Fax: (8620)8222 7490 Postcode:510730

Number: GZHT90306944(S1)

Max. : *

Tests Conducted (As Requested By The Applicant)

Footwear Protecting Against Chemicals (Sole) (BS EN 13832-2:2006(E) 6.2):

		Applicant's Requirement	Pass/Fail
Sample 3 Chemical Used:	N-Heptane (Letter Code: J)		
Tear Resistance: Before Degradation	:		
7.6	24.0 kN/m	Min. 8.0 kN/m	Pass
After Degradation:	26.2 kN/m	Min. 6.4 kN/m	
Hardness: Before Degradation			
-	69 Shore A	Min. 30 Shore A	
After Degradation:	65 Shore A	Min. 30 Shore A	
	03 SHOLE W	Max.: *	
Sample 4:			
Chemical Used:	Sodium Hydroxide (13 ± 1)% (Of Active Chloride)		
	(Letter Code: R)		
Tear Resistance: Before Degradation	:		
, and the second	24.0 kN/m	Min. 8.0 kN/m	Pass
After Degradation:	00.1.127	26' 6 4 127'	
Hardness:	29.1 kN/m	Min. 6.4 kN/m	
Before Degradation		M' 20 01 7	
After Degradation:	70 Shore A	Min. 30 Shore A	
-	63 Shore A	Min. 30 Shore A	

Remark: * = Value Before Degradation +10 Shore A.

Tel: (8620)2232 1668 / 8396 6868 Fax: (8620)8222 7490 Postcode:510730

Number: GZHT90306944(S1)

Tests Conducted (As Requested By The Applicant)

Footwear Protecting Against Chemicals (Sole) (BS EN 13832-2:2006(E) 6.2):

Applicant's Pass/Fail Requirement

Sample 5

Chemical Used: Ammonia Solution (25 ± 1) %

(Letter Code: 0)

Tear Resistance:

Before Degradation:

24.0 kN/m

Min. 8.0 kN/m

Pass

After Degradation:

25.6 kN/m

Min. 6.4 kN/m

Hardness:

Before Degradation:

70 Shore A

Min. 30 Shore A

After Degradation:

59 Shore A

Min. 30 Shore A

Max. : *

Remark: * = Value Before Degradation +10 Shore A.

This report is made solely on the basis of your instructions and/or information and materials supplied by you. It is not intended to be a recommendation for any particular course of action. Intertek does not accept a duty of care or any other responsibility to any person other than the Client in respect of this report and only accepts liability to the Client insofar as is expressly contained in the terms and conditions governing Intertek's provision of services to you. Intertek makes no warranties or representations either express or implied with respect to this report save as provided for in those terms and conditions. We have aimed to conduct the Review on a diligent and careful basis and we do not accept any liability to you for any loss arising out of or in connection with this report, in contract, tort, by statute or otherwise, except in the event of our gross negligence or wilful misconduct.

Number: GZHT90306944(S1)

Tests Conducted (As Requested By The Applicant)

To : NGEE MING SHOE MANUFACTURERS SDN.BHD.

Attention: MISS LILIAN FONG Date: Sep 15, 2012

Re : Report Revision Notification

Labtest Report Number GZHT90306944 date AUG 14, 2012

Please be informed that all the content recorded in the above captioned report will be void. This captioned report is now superseded by a revised Labtest Report, Number GZHT90306944(S1), issued on Sep 15, 2012.

Thank you for your attention

Authorized By:

For Intertek Testing Services

Shenzhen Ltd.

Huang Ning, Andy

Assistant General Manager